More triple integrals, and cylindrical

Answers

Questions

Question 1. Write (but do not evaluate) a triple integral for the volume of the region bounded by the planes $y=0, z=0, x+y=$ 2 and the cylinder $y^{2}+z^{2}=1$ in the first octant.
Question 2. Express (but do not evaluate) the following triple integral in cylindrical coordinates.

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y .
$$

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. There are a lot of correct answers for this problem! Here are some that we looked at in class.
We could use cylindrical coordinates, but with x playing the role of z, i.e. $x=x, y=r \cos \theta, z=r \sin \theta$. This would give

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{2-r \cos \theta} r \mathrm{~d} x \mathrm{~d} r \mathrm{~d} \theta
$$

Another option, using the $\mathrm{d} x$ order first:

$$
\int_{0}^{1} \int_{0}^{2-y} \int_{0}^{\sqrt{1-y^{2}}} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y
$$

It is not convenient to integrate $\mathrm{d} y$ first, because this would require splitting up the region.
Question 2. I drew a picture of the region in class.

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{1} \int_{0}^{9-r^{2}} r^{2} \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

